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Abstract
An explanation for the recently observed asymmetric negative differential
conductance (NDC) in a double-quantum-dot system attached to metallic
external contacts is proposed. The NDC was observed only for one half of
the bias voltage range (−V , V ). The theory, which is based on a diagrammatic
technique for non-equilibrium many-body operator Green functions, suggests
that scattering between the states in the double quantum dot suppresses the total
current dynamically as the bias voltage is increased. The effect is present in
systems where the double-quantum-dot states are asymmetrically coupled to
the left- and right-hand contacts, and we predict that a symmetric coupling will
suppress the negative differential conductance completely.

Recent experiments on double quantum dots (DQDs) coupled to metallic contacts show,
unexpectedly, asymmetric negative differential conductance (NDC) behaviour in the current–
voltage (J–V ) characteristics [1]. The J–V characteristics was asymmetric in the sense that the
NDC appeared only in one half of the bias voltage range (−V , V ). Features of NDC normally
occur in semiconductor double- and multi-barrier structures [2, 3] and can then be referred to
as band-edge effects [4, 5]. Transport experiments on DQDs fabricated from semiconductor
hetero-structures have displayed sharp resonant peaks [6] which are related to the fact that the
energy distance between the levels in the two QDs approaches zero, which creates a resonant
state in the DQD [7]. Alignments of the levels in the two QDs, however, create symmetric
J–V characteristics having sharp resonant peaks with large peak-to-valley ratios, in contrast
to the observations in [1]. Thus, when the interacting region, e.g. DQD, is coupled to metallic
contacts, having a conduction band width of the order of electronvolts, such explanations
cannot be applied. Normally, one expects that the current should increase with increasing
bias voltage, possibly with plateaux due to the zero-dimensional confined levels. The NDC
was suggested to be an effect of resonant tunnelling between the discrete levels in each dot
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Figure 1. (a) J –V characteristics of the DQD system calculated within the HIA (dotted), with the
renormalized transition energies (dashed) and with the theory given by equations (4)–(6) (solid).
For the computations we used the left/right coupling strength �L/R = 0.375 meV and conduction
electron band width 2 eV symmetrically around the equilibrium chemical potential µ = 0 at
T = 5 K. The upper inset shows a typical experimental J –V result on the DQD reported in [1].
The lower inset displays the geometry of the DQD system. (b) Sketch of the energy parameters of
the serial DQD coupled to the contacts. The QDs interact via inter-dot Coulomb repulsion UAB and
hopping t . In QDA/B the bare single-particle energy is εAσ/Bσ . Each QD is coupled to a contact
with the strength �L/R. (c) Schematic picture of the energies of the DQD system in the diagonal
representation (see the text, where µL/R and �nσ , n = 1, 2, are defined). The arrows illustrate the
strengths of the transition probabilities between the one-particle states in the DQD and the contacts.

although the details of the process are not known [1]. Furthermore, the observed asymmetric
appearance of the NDC is hitherto an unexplained effect.

There is a vast literature of theoretical studies on transport through DQD in different
geometries, e.g. DQD in series [8, 9] and in parallel [9–11]. Most of these studies are devoted
to DQDs in the Coulomb blockade regime, where especially phenomena related to Kondo-
like physics are under focus. Although being important for the understanding of effects from
strong correlations on the transport through the system, to our knowledge, no-one has yet
addressed the question of an asymmetric NDC in DQDs coupled to metallic contacts. In this
letter, we propose a theoretical many-body model that leads to a significant NDC in the J–V
characteristics for a DQD system. In addition, our theory yields an NDC for only negative bias
voltages, in agreement with observations [1]. Before we embark on the theoretical modelling,
we present the main result of this letter, given in figure 1(a) (solid curve). The plot displays the
current, as a function of the bias voltage, through a DQD coupled to external metallic contacts.
We suggest that the decreasing current for increasing negative voltages (−9 → −12 mV)
arises due to a dynamical process, causing a strongly decreased probability for tunnelling to
one of the one-particle states in the DQD.

We start our theoretical analysis by considering two electrostatically coupled QDs,
interacting via an inter-dot Coulomb repulsion UAB and hopping t . The DQD is coupled
to external contacts through tunnel barriers where the coupling strength between the left/right
(L/R) contact is given by �L/R (described in more detail below). The geometry of the system
is illustrated in the lower inset of figure 1(a) and the energies of the system are schematically
given in figure 1(b). In order to describe the asymmetry of the experimental system in [1],
we let QDA be larger than QDB and, therefore, we impose finite intra-dot Coulomb repulsions
UA < UB in QDA and QDB, respectively. We also assume that UAB < UA, UB. First we
consider the situation when the DQD is detached from the contacts. Then, the DQD can be
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Table 1. The wavefunctions and energies of the empty and the two spin-degenerate one-particle

states. Here uσ
n1 = (Eγnσ −εBσ )/κ1n , |uσ

n2|2 = 1−|uσ
n1|2, κ1n =

√
(Eγnσ − εBσ )2 + |t|2, n = 1, 2,

where εAσ/Bσ is a single-particle level in QDA/B.

Ntot State Energy

0 |0〉 = |0〉A |0〉B 0

1
|γnσ 〉 = uσ

n1|σ 〉A|0〉B Eγnσ = 1
2

(
εAσ + εBσ

+ uσ
n2|0〉A |σ 〉B + (−1)n

√
(εAσ − εBσ )2 + 4|t|2

)
, n = 1, 2

described by the model Hamiltonian

HDQD =
∑

σ

εAσ a†
σ aσ + UAnA↑nA↓ +

∑
σ

εBσ b†
σ bσ + UBnB↑nB↓

+
∑

σ

t (a†
σ bσ + H.c.) + UAB(nA↑ + nA↓)(nB↑ + nB↓), (1)

where a†
σ (aσ ) creates (annihilates) an electron in QDA at the energy εAσ , and b†

σ (bσ ) creates
(annihilates) an electron in QDB at the energy εBσ . Further, nAσ = a†

σ aσ (nBσ = b†
σ bσ ) and σ

is the spin (↑,↓). From this model one easily finds the empty and the one-, two-, three- and
four-particle states [12], where the empty state refers to the state of the DQD with N − 1
electrons. For the present purposes it suffices to work with transitions between the empty state
|0〉 and the two one-particle states |γnσ 〉, which for clarity are given in table 1. The other states
lie out of range of conduction for the parameters used here and can, therefore, be omitted. For
simplicity, the model given in equation (1) contains only one level in each QD. We address the
question of many levels at the end of this letter.

Now that we know the exact one-particle states of the system, we rewrite equation (1)
in diagonal form by introducing the many-body operators X pq ≡ |p〉〈q| [13], describing the
transition from the state |q〉 to |p〉. Thus, the effective Hamiltonian for the isolated DQD
is given by HDQD = ∑

nσ Eγnσ
Xγnσ γnσ , where Eγnσ

represents the energies of the many-body
states in the DQD. This description of the DQD is convenient when we attach it to the contacts
and the full Hamiltonian, including the contacts, is

H =
∑

kσ∈L,R

εkσ c†
kσ ckσ +

∑
nσ

Eγnσ
Xγnσ γnσ +

∑
n,kσ∈L

[vkσ (aσ )0γnσ c†
kσ X0γnσ + H.c.]

+
∑

n,kσ∈R

[vkσ (bσ )0γnσ c†
kσ X0γnσ + H.c.]. (2)

Here c†
kσ (ckσ ) creates (annihilates) an electron in the left/right-hand contact at the energy

εkσ , whereas the last two terms in equation (2) give the tunnelling between the contacts and
the DQD. Here vkσ (aσ ′)0γnσ represents the probability of an electron escaping to the left-hand
contact, via the the matrix elements between the empty and the singly occupied states of the
DQD, given by (aσ ′)0γnσ ≡ 〈0|aσ ′ |γnσ 〉 = δσσ ′uσ

n1, where uσ
ni , n, i = 1, 2 (given in table 1).

For an electron escaping to the right-hand contact the corresponding matrix elements are
(bσ ′)0γnσ ≡ 〈0|bσ ′ |γnσ 〉 = δσσ ′uσ

n2. These results are easily obtained, using the wavefunctions
in table 1. Thus, |(aσ )0γ1σ |2 = |(aσ )0γ2σ |2 and |(bσ )0γ1σ |2 = |(bσ )0γ2σ |2 only if the two quantum
dots forming the DQD are of equal size and εAσ = εBσ . For εAσ 	= εBσ the transition matrix
elements become distinct, which influences the resulting current. An example of the transition
matrix elements is given in table 2, readily illustrating the degree of asymmetry imposed on
the matrix elements of the DQD for different level distributions of the QDs.
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Table 2. Equilibrium properties of the DQD given the inter-dot Coulomb repulsion UAB = 40 meV
and the hopping t = 0.75 meV. The single-particle levels εAσ/Bσ are input parameters.

(A) (B) (C)

εAσ (meV) −3.5 −2.5 −1.5
εBσ (meV) −1.5 −2.5 −3.5

Eγ1σ
(meV) −3.75 −3.25 −3.75

Eγ2σ
(meV) −1.25 −1.75 −1.25

|(aσ )0γ1σ |2 0.9 0.5 0.1
|(aσ )0γ2σ |2 0.1 0.5 0.9
|(bσ )0γ1σ |2 0.1 0.5 0.9
|(bσ )0γ2σ |2 0.9 0.5 0.1

The current through the system is calculated by the formula [12, 14]

J = − e

2h
Im

∑
nσ

∫
{[�L|(aσ )0γnσ |2 − �R|(bσ )0γnσ |2]G<

nσ (ω)

+ [ fL(ω)�L|(aσ )0γnσ |2 − fR(ω)�R|(bσ )0γnσ |2][Gr
nσ (ω) − Gr

nσ (ω)]} dω, (3)

where �L/R = 2π
∑

kσ∈L/R |vkσ |2δ(ω − εkσ ), and fL/R(ω) = f (ω − µL/R) is the Fermi
function with the chemical potential µL/R of the left/right-hand contact. In equation (3) the
Fourier transforms of the lesser, retarded and advanced forms of the DQD Green function
(GF) Gnσ (t, t ′) ≡ (−i)〈TX0γnσ (t)Xγnσ 0(t ′)〉U appear. The DQD GF is analysed by means
of equations of motion and a diagrammatic technique for Hubbard operator GFs [16]. The
exact equations of motion for a spin-dependent single-level system have been considered
in [15]. With two spin-degenerate levels one obtains analogous equations of motion. The
simplest approximation is given by neglecting all correction diagrams, the so-called Hubbard I
approximation (HIA) [13]. The first correction dresses the transition energies (symbolized by
�) in the DQD [15, 16]. In the present case this renormalization yields the following transition
energies:

�nσ = �0
nσ +

∑
k

|vkσ̄ (dσ̄ )0γnσ̄ |2 f (εkσ̄ ) − f (�nσ̄ )

εkσ̄ − �nσ̄

+
∑

kσ ′,m 	=n

|vkσ ′(dσ ′)0γmσ ′ |2 f (εkσ ′) − f (�mσ ′)

εkσ ′ − �mσ ′
, (4)

where n, m = 1, 2, are eigenstate indices of the DQD, σ̄ is the opposite spin of σ , whereas
k runs over all states in the leads (both in the right- and left-hand contacts) and dσ = aσ (bσ )

for k ∈ L(R). Here, �0
nσ = Eγnσ

− E0 is the bare transition energy. Note that the energy
�nσ for the transition |0〉 → |γnσ 〉 is renormalized by the other possible transitions in the
DQD. The renormalization arises from kinematic effects involving the transitions in the DQD
and the coupling to the conduction electrons in the contacts. This is a characteristic feature
for systems with complexes of two or more bounded particles interacting with conduction
electrons [16, 17].

The renormalization of the transition energies is an important ingredient, although alone
it does not explain the NDC. This information is contained in the non-equilibrium spectral
weights of the transitions. The DQD GF, Gnσ , is constituted by the product Gnσ (t, t ′) =
Dnσ (t, t ′)Pnσ (t ′), where the locator, Dnσ , contains information about the pole whereas the end-
factor, Pnσ (t ′) ≡ 〈T{X0γnσ , Xγnσ 0}(t ′)〉U , gives the spectral weight of the GF. The end-factor
is interpreted as the sum of the population numbers of the empty state and |γnσ 〉, respectively.
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When applying the methods developed in [16], one has to expand both the locator and the
end-factor. The result of the first-order correction from the expansion of the locator is given
in equation (4). However, one also has to perform a first-order expansion in the end-factor. In
order to avoid lengthy derivations in this letter, which will be presented elsewhere, we only
give the final algebraic expression of the dressed end-factors

Pnσ (iω) = Pnσ + δPnnσ̄ σ (iω) +
∑

σ ′,m 	=n

δPmnσ ′σ (iω), (5)

where

δPmnσ ′σ (iω) = − Pmσ ′ − Pnσ

2π

∫ ∑
k

|vkσ ′(dσ ′)0γmσ ′ |2
εkσ ′ − ω′ [−2 Im Dr

mσ ′(ω
′)]

×
(

f (εkσ ′) − [nB(�nmσσ ′) + 1]

iω − �nmσσ ′ − εkσ ′
− f (ω′) − [nB(�nmσσ ′) + 1]

iω − �nmσσ ′ − ω′

)
dω′. (6)

In this expression Dr
mσ ′(ω′) is the retarded locator for the transition |0〉 → |γmσ ′ 〉 and nB(x)

is the Bose function, whereas �nmσσ ′ = �nσ − �mσ ′ is the energy for transitions between
the states |γmσ ′ 〉 and |γnσ 〉. Clearly, the dressed end-factor is bias voltage and frequency
dependent with a finite imaginary part. This function also exhibits attributes concerning
scattering processes between the different one-particle states, something which we shall see
below is important for the transport properties.

In figure 1(a) we show the main result of this letter, the calculated J–V characteristics,
equation (3), for three different approximations (HIA, renormalized transition energies,
i.e. equation (4), which are both mean field approximations of the DQD GF in the sense
that the spectral weights and imaginary parts of the self-energies are energy independent, and
the result based on equations (4)–(6)). The upper inset of figure 1(a) shows the corresponding
experimental data and it may be seen that agreement between experiment and theory is good
only for the calculation based on equations (4)–(6). For this theory one reproduces in a
quantitative way the shape of the J–V curve, including the NDC at ∼−10 meV.

We proceed by analysing the cause of the NDC in the result based on equations (4)–(6).
From the mean field theories we see in figure 1(a) that the main contribution to the current
comes from the direct tunnelling through the DQD via the one-particle states |γnσ 〉, n = 1, 2,
and although the states couple asymmetrically to the left- and right-hand contacts the resulting
current is symmetric. This is expected since the transmission coefficient for the DQD, as is
given in mean field theory, is equal for electrons entering from the left-hand contact and from the
right. However, the mean field results for the DQD GF do not include the transitions |γ1σ 〉〈γ2σ |
and vice versa, since such transitions are not included in the Hamiltonian, equation (2). In
contrast, when the approximation based on equations (4)–(6) is included in the calculations,
effects from these transitions will be accounted for, as is seen in equation (6). However,
contrary to what one might think, the importance of this correction becomes significant for bias
voltages around �nσ, n = 1, 2. To see this we simplify the expression in equation (6) by putting
−2 Im Dr

mσ (ω′) = 2πδ(ω′ − �mσ ) and assume k-independent hybridization matrix elements,
vkσ , and wide and flat conduction bands in the contacts. The contribution to equation (6) from
the interactions between particles in the left-hand contact and the DQD then reduces to

δP
r
21σσ (ω) ∼ − P2σ − P1σ

ω − �1σ

�L|(aσ )0γ2σ |2
(

log

∣∣∣∣ µL − �2σ

ω − �12σσ − µL

∣∣∣∣ − i fL(ω − �12σσ )/2

)
.

This contribution, of which the imaginary part is peaked around �γ1σ
, provides a decreased

population, N1 = ∑
σ N1σ , of the transition |γ1σ 〉〈γ1σ |, as compared to the mean field results.

Indeed, the population number approaches zero for negative bias voltages eV ∼ �1σ (<0),
which leads to the transition |γ1σ 〉〈0| becoming less available for conduction through the
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Figure 2. DQD J –V characteristics for case (A) (solid), case (B) (dotted) and case (C) (dashed)
listed in table 2.

DQD. For the transition |γ2σ 〉〈0| this effect also appear for negative bias voltages, but becomes
negligible due to the much smaller coupling of this transition to the left-hand contact. For
positive bias voltages, the situation is the opposite in the sense that |γ1σ 〉〈0| couples more
weakly to the right-hand contact than |γ2σ 〉〈0| does. Thus, the effect from the scattering
between the two one-particle states becomes stronger for the latter, which results in the absence
of the current step for bias voltages around −�γ2σ

(>0).
In a DQD system, such as the one considered in [1], it is far from obvious that the level

distribution of the two QDs, cf figure 1(b), is such that the conducting level in QDA lies below
the corresponding level in QDB, i.e. εAσ < εBσ . If one considers the same principal quantum
number this is in general true, if QDA is larger than QDB. The conducting states in the two
QDs, however, may be of non-equal principal quantum number, say |nA = N + 1〉A and
|nB = N〉B. Then, the corresponding energies may be shifted such that ε

(N+1)

Aσ > ε
(N)
Bσ , which

is the configuration listed in table 2 (C). From our theoretical model we predict that in this case
the NDC will occur for positive bias voltages. As a matter of fact we predict that a number of
interesting features will occur as a function of the level distribution inside the DQD, i.e. when
the relative positions of εAσ and εBσ are modified. This is illustrated in figure 2 where we
display J–V characteristics for three cases of εAσ and εBσ (they are also listed in table 2). In
the figure it may be seen that J–V characteristics without an NDC, with an NDC for negative
bias and with an NDC for positive bias can be obtained, depending on the relative position of
εAσ and εBσ . The position of εAσ (or εBσ ) can be varied by applying a gate voltage only on
QDA (or QDB). In this way it is possible to tune the energy levels of the DQD. An experimental
study of our prediction in figure 2 would be very intriguing.

Although the currently proposed model successfully describes the experiment in [1] in a
quantitative way, one must bear in mind that several approximations have been introduced.
We have for instance ignored the shape of the DQD in the experiment and replaced it with an
effective model Hamiltonian. The geometrical confinement of the DQD is in the experiment
composed of two single-walled nano-tubes. However, the spatial constraints in these nano-
tubes will give rise to level quantization, which is of main importance for the conductance,
and this is captured by our model. One may argue that more than one level in each QD should
be included for the calculations. The level spacing in each QD, however, is in the order of half
the maximum value of the bias voltage applied to the system. Moreover, the discussed effect
appears for all transitions that add or remove one electron to/from the DQD and, hence, for
the present purposes it is not required to include more levels in the QDs. Also, we have made
use of a perturbational treatment of the coupling between the states in the contacts and the
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states in the DQD. This approximation is motivated by the smallness of the coupling strength
between the DQD and the contacts, compared to the energetics inside the DQD [18]. Also, the
high degree of accuracy of the diagrammatic expansion of the DQD transition energy shifts
and spectral weights motivates a perturbational treatment.

In conclusion, we suggest a theoretical explanation for the recently observed NDC in a
DQD coupled to external metallic contacts [1]. Because of the large band width in normal
metals, that is in the order of electronvolts, the standard explanation of band-edge effects, that
is relevant for semiconductor systems, cannot be applied in this context. Instead we show
that the observation of an NDC in mesoscopic systems attached to metallic contacts is related
to scattering between different states in the interacting region. In order to understand this
theoretically one has to perform highly accurate calculations, involving loop corrections to
the end-factors of the DQD GF. In particular, for asymmetric systems the resulting current
becomes strongly asymmetric, with respect to the bias voltage, showing an NDC for one half
of the voltage range.

We acknowledge valuable discussions with Professor I Sandalov. Support from the Göran
Gustafsson foundation, the Foundation for Strategic Research (SSF) and the Swedish National
Science Foundation (VR) is acknowledged.

References

[1] Ishibashi K, Suzuki M, Ida T and Aoyagi Y 2001 Appl. Phys. Lett. 79 1864
[2] Sollner T C L G, Goodhue W D, Tannenwald P E, Parker C D and Peck D D 1983 Appl. Phys. Lett. 43 588
[3] Sibille A, Palmier J F, Wang H and Mollot F 1990 Phys. Rev. Lett. 64 52
[4] Tsu R and Esaki L 1973 Appl. Phys. Lett. 22 562
[5] Chang L L, Esaki L and Tsu R 1974 Appl. Phys. Lett. 24 593
[6] van der Vaart N C, Godjin S F, Nazarov Y V, Harmans C J P M, Mooij J E, Molenkamp L W and Foxon C T 1995

Phys. Rev. Lett. 74 4702
[7] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003

Rev. Mod. Phys. 75 1
[8] Wegewijs M R, Nazarov Y V and Gurvitz S A 2001 Japan. J. Appl. Phys. 40 1994
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